China Custom High Pressure Oil Free Ammonia Natural Gas Piston Compressor Reciprocating Compressor air compressor price

Product Description

HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.

Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.

Ammonia unloading compressor
Product description
This series of oil-free lubrication compressors is 1 of the products produced by our company. The product has the characteristics of low rotation speed, high component strength, stable operation, long service life, and convenient maintenance. Among them, the ZW series compressor is in the form of a unit. It integrates compressor, gas-liquid separator, filter, two-position four-way valve, safety valve, check valve, explosion-proof motor, and chassis. It has the characteristics of small size, lightweight, low noise, good airtightness, easy installation, and simple operation.
This product is mainly used for unloading, loading, refilling, gas recovery, and residual liquid recovery of LPG/C4, propylene, and liquid ammonia. It is widely used in gas, chemical, energy, and other industries, and is the key equipment for gas, chemical, energy, and other industries.

Note: In the process of unloading, the compressor pressurizes the gas from the storage tank and then presses it into the tank truck through the gas phase pipeline, and presses the liquid from the tank truck to the storage tank through the pressure difference of the gas phase to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will increase. At this time, it is not necessary to perform forced cooling, because if the gas phase is compressed and then cooled, it is easy to liquefy and it is difficult to establish a pressure difference in the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause an extension of the unloading process time. If residual gas recovery is required, a cooler can be used to forcibly cool the gas phase during the residual gas recovery operation in order to recover the residual gas as soon as possible.
The loading process is opposite to the unloading process.

Specification

NO

Model

(Nm3/h)

Inlet pressure

(Mpa)

Outlet pressure

(Mpa)

Moter POWER

(KW)

Dimensions

(mm)

1

ZW-0.6/16-24

550

1.6

2.4

11

1000×580×870

2

ZW-0.8/16-24

750

1.6

2.4

15

1000×580×870

3

ZW-1.0/16-24

920

1.6

2.4

18.5

1000×580×870

4

ZW-1.5/16-24

1380

1.6

2.4

30

1000×580×870

5

ZW-2.0/16-24

1500

1.6

2.4

37

1000×580×870

6

ZW-2.5/16-24

1880

1.6

2.4

45

1000×580×870

7

ZW-3.0/16-24

2250

1.6

2.4

55

1000×580×870

8

ZW-0.8/10-16

450

1.0

1.6

11

1100×740×960

9

ZW-1.1/10-16

600

1.0

1.6

15

1100×740×960

10

ZW-1.35/10-16

750

1.0

1.6

18.5

1100×740×960

11

ZW-1.6/10-16

950

1.0

1.6

22

1400×900×1180

12

ZW-2.0/10-16

1200

1.0

1.6

30

1400×900×1180

13

ZW-2.5/10-16

1500

1.0

1.6

37

1400×900×1180

14

ZW-3.0/10-16

1800

1.0

1.6

45

1400×900×1180

15

ZW-0.6/16-24

550

1.6

2.4

11

1500×800×1100

16

ZW-0.8/16-24

750

1.6

2.4

15

1500×800×1100

17

ZW-1.0/16-24

920

1.6

2.4

18.5

1500×800×1100

18

ZW-1.5/16-24

1380

1.6

2.4

30

1600×900×1200

19

ZW-2.0/16-24

1500

1.6

2.4

37

1600×900×1200

20

ZW-2.5/16-24

1880

1.6

2.4

45

1600×900×1200

21

ZW-3.0/16-24

2580

1.6

2.4

55

1600×900×1200

22

ZW-3.5/16-24

3000

1.6

2.4

55

1600×900×1200

23

ZW-4.0/16-24

3500

1.6

2.4

75

1600×900×1200

24

ZW-0.2/10-25

100

1

2.5

5.5

1000×580×870

25

ZW-0.4/10-25

220

1

2.5

11

1000×580×870

26

ZW-0.6/10-25

330

1

2.5

15

1000×580×870

27

ZW-0.2/25-40

260

2.5

4

7.5

1000×580×870

28

ZW-0.4/25-40

510

2.5

4

15

1000×580×870

29

ZW-0.5/25-40

660

2.5

4

18.5

1000×580×870

30

ZW-0.3/20-30

300

2

3

7.5

1000×580×870

31

ZW-0.4/20-30

420

2

3

11

1000×580×870

32

ZW-0.5/20-30

540

2

3

15

1000×580×870

33

ZW-0.6/20-30

630

2

3

15

1000×580×870

34

ZW-1.6/20-30

1710

2

3

37

1400×900×1180

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide After-Sales Service
Warranty: 18months
Lubrication Style: Lubricated
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

What Are the Advantages of Using a Gas Air Compressor Over an Electric One?

Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:

1. Portability and Mobility:

Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.

2. Independence from Electricity:

One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.

3. Versatility in Fuel Options:

Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.

4. Higher Power Output:

Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.

5. Continuous Operation:

Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.

6. Quick Startup and Response:

Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.

7. Durability and Resistance to Voltage Fluctuations:

Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.

8. Lower Energy Costs:

Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.

Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.

China Custom High Pressure Oil Free Ammonia Natural Gas Piston Compressor Reciprocating Compressor   air compressor priceChina Custom High Pressure Oil Free Ammonia Natural Gas Piston Compressor Reciprocating Compressor   air compressor price
editor by CX 2024-04-19

Recent Posts