China high quality Hydrogen Gas Booster 300 Bar CO2 Oxygen and Tank Nitrogen Generator Compressor wholesaler

Product Description

Product Description

Oxygen compressor

Safety oxygen compressor for pressurizing oxygen and transporting or storing oxygen

Used in hospital oxygen supply center, to increase the oxygen supply line pressure in the room, and pressurized oxygen, and fill in the cylinder, can also be used in industrial B fast combustion aid cutting, cutting scrap steel in the steel plant, support boiler oxygen combustion, the low temperature liquid oxygen tank in the vapor oxygen recirculation to the tank waiting for various conditions

                  Oil-free low pressure oxygen compressor                                                             Oil-free high-pressure oxygen compressor

Nitrogen compressor

Nitrogen compressor for pressurizing nitrogen gas and transporting or storing it
It is mainly used for pressurization and filling of nitrogen bottles, nitrogen pressure and leakage test of pipelines and other industries. The maximum filling pressure can reach 40MPA. According to the cooling method, it can be divided into air cooling and water cooling, and according to the compression level, it can be divided into 3 stages and 4 stages

                       Oil-free low pressure nitrogen compressor                                              Oil-free high-pressure nitrogen compressor

Hydrogen compressor

It’s a device that can vary the amount of hydrogen to complete compression and delivery
Uses: to supercharge hydrogen in the heat treatment of steel mills, polysilicon industry, to provide the raw material hydrogen with continuous pressure for the reactor. In the future, with the extensive construction of hydrogenation stations, hydrogen compressor will be more used in hydrogen fuel cells, filling hydrogen with very high pressure into the hydrogen car, to obtain clean, green and pollution-free energy

                     Oil free low pressure hydrogen compressor                                           Oil free low pressure hydrogen compressor

Carbon dioxide compressor

A compressor used to pressurize and transport carbon dioxide gas
The uses are as follows: carbon dioxide recovery in dry ice plant, CO2 recovery, storage and reuse in carbon dioxide supercritical extraction process; In the dry ice plant and CO2 extraction process, the compressor suction pressure is 0-1BARG, the discharge pressure can reach 80BAR, and the flow rate is 5NM3-600NM3/ h

                    V-type all-oil-free CO2 CO2 compressor                                                      ZCW vertical large capacity oil free carbon dioxide supercharger

Sulfur hexafluoride compressor

For SF6 circuit breaker repair and maintenance, SR gas recovery circuit breaker
SF6 compressor seal tight, safe and reliable, easy to operate, easy to maintain, low noise, low vibration, energy saving, no
pollution, durable, and has complete safety protection. The SF6 compressor can be operated without any lubricating oil, and advanced resin grease is injected into the bearings of the moving parts.

                    wW silent oil-free sulfur hexafluoride recovery compressor                                     SW oil-free sulfur hexafluoride compressor

Argon compressor

1. No oil at all

2. Single or double stage, 3 stage compression, 4 stage compression

3. Pry mounted, easy to move

4. Long time load, 24 hours to continue to work 5. Silent work

Cooling method: Air/water cooling

Color: Gray or custom

Packing case: Wooden case

Standard: CE/ISO9001

Delivery time: 50-60 days

Helium compressor

1. No oil at all

2. Single or double stage, 3 stage compression, 4 stage compression

3. Pry mounted, easy to move

4. Long time load, 24 hours to continue to work 5. Silent work

Cooling method: Air/water cooling

Color: Gray or custom

Packing case: Wooden case

Standard: CE/ISO9001

Delivery time: 50-60 days

Vinyl fluoride compressor

1. No oil at all

2. Single or double stage, 3 stage compression, 4 stage compression

3. Pry mounted, easy to move

4. Long time load, 24 hours to continue to work 5. Silent work

Cooling method: Air/water cooling

Color: Gray or custom

Packing case: Wooden case

Standard: CE/ISO9001

Delivery time: 50-60 days

Vinyl chloride compressor

1. No oil at all

2. Single or double stage, 3 stage compression, 4 stage compression

3. Pry mounted, easy to move

4. Long time load, 24 hours to continue to work 5. Silent work

Cooling method: Air/water cooling

Color: Gray or custom

Packing case: Wooden case

Standard: CE/ISO9001

Delivery time: 50-60 days

 

 

 

Company Profile

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: New Energy
Noise Level: Low
Machine Size: Medium
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Noise Level of Gas Air Compressors?

The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:

1. Compressor Design:

The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.

2. Engine Type:

The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.

3. Operating Conditions:

The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.

4. Noise-Reducing Features:

Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.

5. Manufacturer Specifications:

Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.

6. Distance and Location:

The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.

It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.

Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China high quality Hydrogen Gas Booster 300 Bar CO2 Oxygen and Tank Nitrogen Generator Compressor   wholesaler China high quality Hydrogen Gas Booster 300 Bar CO2 Oxygen and Tank Nitrogen Generator Compressor   wholesaler
editor by CX 2024-04-09

Recent Posts