China high quality Industrial 11kw 15 HP Integratedportable Oil Injected Middle Pressure 16bar CHINAMFG Air End Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting air compressor lowes

Product Description

Integrated air tank air dryer screw air compressor
Belt driven type Screw Air Compressor Specifications
* Genuine belt to meet the demand of heavy-duty, long life and high reliability.
* Convenient belt tensioning device makes the maintenance easy,and the transmisstion high-efficiency is ensured.
* Provide the flexibility for the customers easily modify the working pressure if a change becomes necessary.
* Low operation cost
* Energy saving

 
KP-LB Belt Drive Integrated Type Screw Air Compressor with air tank air dryer 
Power range: 20hp ~ 600hp
Pressure: 7-13 Bar

* 7bar/8bar/10bar/12.5bar working pressure(discharge pressure) for your selection (for more lower pressure 4bar or 6bar, please send your inquiry )
* Intelligent microcomputer control system, controller has the remind & record function, show the compressor operation situation clearly
* Superior components, low maintenance cost
* Germany OPTI belt, easy for replace, and ensure the product quality
* Oversize air-end, low rpm, no overheat problem
* IP54/IP55 high quality motor, CHINAMFG bearing, Class F level insulation; Class BTemperature rise; 
* Discharge temperature= Ambient temperature+15ºC, with cooling/ventilation system tailor made to the same local hot-humid climatic condition, NO OVERHEATING ON CONTINUOUS 100% LOAD IS GUARANTEED!
* Top door is locking design, easy to open to clean the cooler and fan 
*Compressor is filled with lubrication oil before delivering, you can operate it after installed and powered on. Once it run 500hours to change the new air filter and oil filter was set for first maintenance, then normally change them with 2000-3000hours for once maintenance replacing new one.
* Phase reversal protection, current overload protection, pressure protection, overheat protection

Model No. Motor Power
(kw)
Power(Hp) Air delivery(m³/mim)  Working pressure(bar) Lubricant Oil  (L) Outlet Pipe Dia L*W*H(mm) N.W(KG)
KP-LD-22 22 30 3.5 7 15 G1″ 1300×850×1220 550
3.3 8
3 10
2.6 13
KP-LD-30 30 40 5.2 7 20 G1-1/2″ 1550×950×1380 700
5.0 8
4.5 10
3.8 13
KP-LD-37 37 50 6.5 7 20 G1-1/2″ 1550×950×1380 800
6.2 8
5.7 10
4.8 13
KP-LD-45 45 60 8.0 7 20 G1-1/2″ 1550×950×1380 960
7.5 8
6.9 10
6.0 13
KP-LD-55 55 75 10.3 7 30 G2″ 1700×1100×1520 1600
9.6 8
8.7 10
7.5 13
KP-LD-75 75 100 13.5 7 35 G2″ 2100×1200×1650 1900
12.5 8
11.2 10
10.0 13
KP-LD-90 90 125 16.3 7 40 DN50 2200×1250×1650 2100
15.9 8
14.0 10
12.2 13
KP-LD-110 110 150 21.0 7 50 DN65 2500×1500×1950 3400
20.0 8
17.0 10
14.8 13
KP-LD-132 132 180 23.5 7 50 DN65 2500×1500×1950 3400
22.5 8
21.0 10
18.0 13
KP-LD-160 160 220 28.0 7 60 DN80 2600×1500×1950 4000
26.5 8
24.5 10
20.3 13
KP-LD-185 185 250 32.0 7 60 DN80 2800×1560×1920 4000
30.0 8
27.8 10
24.5 13
KP-LD-200 200 280 34.3 7 60 DN80 2800×1700×1950 4200
32.9 8
30.2 10
27.2 13
KP-LD-220 220 300 36.0 7 100 DN100 3360×2000×2000 4500
34.2 8
30.2 10
27.5 13
KP-LD-250 250 340 43.5 7 100 DN100 3360×2000×2000 4900
41.8 8
38.0 10
34.5 13
KP-LD-315 315 400 57.6 7 220 DN125 4200×2250×2275 5700
54.5 8
50 10
43.4 13
KPLD-355 355 480 64.5 7 220 DN125 4200×2250×2275 6200
62.2 8
56.0 10
48.6 13

*According to the standard of GB19153-2009     *Compressor Stage: CHINAMFG Compression
*Standard Power Supply: 380V/50Hz/3ph           *Exhaust Temperature: Ambient Temperature +15ºC
*Configurated normal temperature type Air dryer,with Dew Point range: 3-10ºC;
*Please contact us for any specification that is not within the above mentioned standard.
 

Welcome to join us !
We Consider Our Customers as Our Friends and Families, and We do Believe in the CHINAMFG Situation for Building up Long-Term Relationship. 
• Innovation
    Provide innovative, stable products and services.
• Quality
    Deliver consistently superior performance and pursue every possible improvement. 
• Agility
    Identify emerging trends and act quickly to acquire new opportunities.
• Customer Satisfaction
    Anticipate customer needs and exceed their expectations.
• Warranty
Within 12 months since the customer used,or 18 months since shipped from factory, no matter which expires, we ensure that no defects for material and manufacturing.

 

 

Type: Volumetric Filling Machine
Automatic Grade: Semi-Automatic
Material Type: Gas
Filling Valve Head: Single-Head
Feed Cylinder Structure: Single-Room Feeding
Dosing Device: Capacity Cup
Samples:
US$ 3500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China high quality Industrial 11kw 15 HP Integratedportable Oil Injected Middle Pressure 16bar CHINAMFG Air End Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting   air compressor lowesChina high quality Industrial 11kw 15 HP Integratedportable Oil Injected Middle Pressure 16bar CHINAMFG Air End Screw Air Compressor with 500L Air Tank for Fiber Laser Cutting   air compressor lowes
editor by CX 2023-11-13

Recent Posts